Introduction to Machine Learning


The Introduction to Machine Learning course will allow you to learn about specific techniques used in supervised, unsupervised, and semi-supervised learning, including which applications each type of machine learning is best suited for and the type of training data each requires.

You will discover how to differentiate offline and online training and predictions, automated machine learning, and how the cloud environment affects machine learning functions. Additionally, you will explore some of the most significant areas in the field of machine learning research.

Enrollment Options:

6 Weeks Access Course Code: ima
Start Dates* May 15 | Jun 19 | Jul 17 | Aug 14
*Choose start date in cart


3 Months Access Course Code: T14287
No Instructor, Start Anytime



Enroll before 31th May and get high quality lamination on your hardcopy certificate absolutely free! Use your certificate to your advantage by showing your certified credentials to prospective employers and recruiters.


Introduction to Machine Learning

Machine learning (ML) is a type of artificial intelligence (AI) that focuses on enabling a system to learn without being explicitly programmed. Using ML, an AI system can figure things out on its own and learn from its mistakes, much as a human might do. This lesson covers how a machine learns and the importance of data it learns from, then introduces three basic ways machine learning can take place: supervised learning, unsupervised learning, and reinforcement learning.

Which Problems Can Machine Learning Solve?

In this lesson, you'll learn about the three main types of machine learning analytics—descriptive, predictive, and prescriptive—and how they enable ML to drive disruption in many industries. You'll also explore the kind of problems that machine learning can help solve and the key considerations when selecting data for a machine learning project.

The Machine Learning Pipeline

The machine learning pipeline, from data pre-processing to feature engineering and model selection, centers on data. You'll find out how data is selected and cleaned up for use, and how data scientists decide which features to include. You'll also learn how they go about creating the algorithms that will yield accurate output.

Working with Data

This lesson focuses more closely on the data that feeds the machine learning process. Data scientists spend up to 80% of their time in data-preparation related tasks. You'll learn about the main techniques used for data preparation purposes, including cleaning, encoding, scaling, and correcting imbalances, to get the most relevant and error-free data to train a machine learning model.

Supervised Learning: Regression

Supervised learning is one type of machine learning that maps labeled input data to known output. By finding the relationship between the input and the output, the system can apply that relationship to other input to predict the output. This lesson takes a quick look at the mathematics behind how the system finds that relationship using linear, polynomial, or logistic regression.

Supervised Learning: Classification

Regression enables a system to find the relationship between numeric inputs and outputs. But when the data is not numeric, a classification algorithm works to predict the category that data belongs to. Classification is an important task since it allows the computer to choose among different alternatives. In this lesson, you'll learn about binary, multi-class, and multi-label classification.

Ensemble Methods

Ensemble methods of machine learning combine several simple models with weak predicting power in order to get better predictions. Akin to the idea that two heads are better than one, these methods aggregate the results of many predictions. We'll look at a range of ensemble methods, including voting, averaging, weighted averaging, bagging and bootstrap aggregating, random forest, and adaptive boosting, along with some practical examples of how they are used.

Unsupervised Learning

Unsupervised learning is a type of machine learning that deals with unlabeled datasets; it finds structure in data without having information about the correct output. In other words, unsupervised learning seeks to describe data as opposed to predict data (as is the case with supervised learning). In this lesson, you will learn about clustering algorithms and dimensionality reduction, two techniques for unsupervised learning, along with some application examples.

Semi-Supervised Learning

Semi-supervised learning is a machine learning method that combines the best of supervised and unsupervised learning in terms of both data availability and outcomes. It uses both labeled and unlabeled data and actually closely mimics how humans learn. It can even be trained to label data that is used to train other algorithms. This lesson will cover self-training, pseudo-labels, and transfer learning. It will also look at practical examples of how semi-supervised learning is used.

Reinforcement Learning

Reinforcement learning is a type of machine learning where the system learns through interacting with its environment, not by having access to large amounts of training data. In this lesson, you'll explore what it means for a computer to interact with the environment, how to model and formalize these interactions, and how machines learn in this context.

Building and Deploying Machine Learning Apps

A successful ML learning project requires the project staff to work through a set of steps, collectively known as the machine learning workflow. In this lesson, you'll look at the final two steps in the process: training and deployment. We'll look at the difference between offline and online training and predictions, automated machine learning, and how the cloud environment affects machine learning functions. You'll also learn about model and data versioning, testing, and data validation, all of which are important to the deployment process.

Beyond Machine Learning

Machine learning is a very active research area, and its impact on businesses and our daily lives has both increased and become more evident during the last decade. As the field further advances, developments in data management and computing capacity will play an important role. In this lesson, you'll explore some of the most prominent active areas in machine learning and which future improvements are likely to move the field forward.


Hardware Requirements:

  • This course can be taken on either a PC or Mac.

Software Requirements:

  • PC: Windows 8 or newer.
  • Mac: OS X Snow Leopard 10.6 or later.
  • Browser: The latest version of Google Chrome or Mozilla Firefox are preferred. Microsoft Edge and Safari are also compatible.


  • Email capabilities and access to a personal email account.


There are no prerequisites to take this course.


David Iseminger is an author and technology veteran with expertise in computing, networking, wireless and cloud technologies, data and analytics, artificial intelligence, and blockchain. While with Microsoft, David worked on early versions of Windows and its core networking infrastructure, transmission protocols, security, data visualizations, and multiple emerging cloud technologies. David is passionate about education, serving as a School Board director for over ten years, advocating at state and federal levels for increased learning standards, and has taught over 40,000 students through multiple technology courses. He has an awarded patent in Artificial Intelligence (AI) object detection and social posting methodologies. He is the founder and CEO of the blockchain company that created IronWeave, the unlimited scale blockchain platform, based on his patent-pending blockchain innovations and inventions.


About ExpertRating

ExpertRating is an ISO 9001:2015 certified company offering online certification and training services to individuals and companies globally. Over 25 million people have benefited from ExpertRating Online Certifications and assessments. ExpertRating is the winner of the Google SME Hero's award for showing outstanding use of technology in delivering trusted services to thousands of people on a daily basis. Our affordable certifications are an excellent way of demonstrating your knowledge and skills to prospective employers as well as vastly boosting your chances of moving ahead in your business or career.

Company Timeline

Since 2001

Decades of excellence

800+ Skill Tests

World’s largest test inventory

2500+ Companies

Thousands depend on use

25 Million People Tested

10 tests every minute

35 Countries Serviced

Over 1500 clients in the US

86% Reorder Rate

Satisfied clients

We deliver over 3 million online certification tests and online courses annually.


ExpertRating is a winner of the Google SME Heroes award. This award has been instituted by Google to honor IT companies that have excelled in their domain and have leveraged the internet to grow and expand their businesses in innovative ways.

ExpertRating is an ISO 9001:2015 certified company, which reflects that our courses and tests conform to the highest international quality standards. Our training material is prepared by thorough professionals with years of experience, and goes through several rounds of analysis by expert teams to help develop well-balanced, comprehensive and meaningful content.